US009178766B2

a2 United States Patent 10) Patent No.: US 9,178,766 B2
Kramer et al. 45) Date of Patent: Nov. 3, 2015
(54) PROVISIONING MULTIPLE NETWORK 7,844,903 B2 11/2010 Dawkins et al.
RESOURCES 7,873,960 B2 1/2011 Templin et al.
8,326,658 Bl 12/2012 Leeetal.
(75) Inventors: Reto Kramer, Issaquah, WA (US); 8,331,362 B2 12/2012 Shukla et al.
Daniel Lee Osiecki, Seattle, WA (US); 8,825,817 Bl 9/2014 Jaisinghani et al.
Nishanth Shankaran Klrkland WA 2002/0087734 Al* 7/2002 Marshall et al. 709/310
(US): Venkates P. Bafakrishna;l 2005/0021688 Al 1/2005 Felts et al.
Seattle, WA (US); Geoffrey Scott Pare, (Continued)
Seattle, WA (US); Blake Meike, Seattle,
WA (US); Christopher Whitaker, FOREIGN PATENT DOCUMENTS
Sammamish, WA (US)
CN 101156138 4/2008
(73) Assignee: Amazon Technologies, Inc., Reno, NV P 2004086769 3/2004
us) (Continued)
(*) Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 132 days. PCT Search Report mailed Nov. 3, 2011 for PCT application No.
PCT/US11/42050, 9 pages.
(21) Appl. No.: 12/824,723 (Continued)
(22) Filed: Jun. 28,2010
(65) Prior Publication Data Primary Examiner — Suraj Joshi
US 2011/0320605 A1l Dec. 29, 2011 (74) Attorney, Agent, or Firm — Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
(51) Imt.ClL
HO4L 12/24 (2006.01)
HO4L 29/08 (2006.01) (57 ABSTRACT
GO6F 15/173 (2006.01) S . ..
(52) US.Cl A resource provisioning service allows users to provision
CPC) HO4L 41/0843 (2013.01); HO4L 67/1097 multiple, different network resources in an atomic manner
"""" (2013.01); HO4L 67/34 (2013.01) and with a single call to a resource provisioning service. In
(58) Field of Classification Sear c,h some instances, the multiple, different network resources
CPC HOAL 41/0843: HOAL 67/34: HOAL 1/0816 comprise individual types of resources that form a portion of
See application file for c’ompl ete searc,h history. one or more cloud-computing platforms. For instance, one or
more entities may host and operate a cloud-computing plat-
(56) References Cited form that includes different types of network resources, such

U.S. PATENT DOCUMENTS

6,766,364 B2 7/2004 Moyer et al.
7,246,200 Bl 7/2007 van Rietschote et al.
7,290,164 Bl 10/2007 Harvey et al.
7.457,853 Bl 11/2008 Chari et al.

a storage service, a load balancing service, a compute service,
a security service, or any other similar or different type of
network-accessible service.

35 Claims, 10 Drawing Sheets

US 9,178,766 B2

Page 2
(56) References Cited Jp 2007-520814 7/2007
Jp 2007193696 8/2007
U.S. PATENT DOCUMENTS P 2009217321 9/2009
Jp 2010140403 6/2010
2006/0050862 Al 3/2006 Shen etal. P 2012501021 172012
2006/0075102 A1* 4/2006 CUPIt .ovoovvvvrererreeneean, 709/225 WO WO02010023139 3/2010
2006/0195575 Al 8/2006 Delany et al.
2007/0016897 Al* 1/2007 Toddccccovvvvvinininnns 717/143 OTHER PUBLICATIONS
%88;;85%8;3 ﬁ} 1?;588; glr)%zne “Cloud Computing. Delivered.”, RightScale Inc., Retrieved on May
2008/0163171 Al 7/2008 Chess et al. 7,2010 at <<http://www.rightscale.com/>>, pp. 1-7.
2008/0288239 Al* 11/2008 Baileyetal.cccccocoveene. 704/2 “Open Virtualization Format”, VMware Inc., Retrieved on May 7,
2009/0064135 Al 3/2009 Jimmerson 2010 at <<http://www.vmware.com/appliances/getting-started/
2009/0077090 Al 3/2009 Pacifici et al. learn/ovfhtml>>, pp. 1-6.
2009/0217287 Al 8/2009 Blum et al. Translated Japanese Office Action mailed Jan. 21, 2014 for Japanese
2010/0005529 Al 1/2010 Hemade patent application No. 2013-518539, a counterpart foreign applica-
2010/0023934 Al 1/2010 Sheehan et al. tion of U.S. Appl. No. 12/824,723, 14 pages.
2010/0037287 Al 2/2010 Netrakanti et al. -
2010/0050173 AL* 22010 Hensbergen Extended European Search Report mailed Mar. 27, 2014 for Euro-
2010/0131324 Al* 5/2010 Ferris """"""""" pean patent application No. 11804097.1, 6 pages.
2010/0131625 Al 5/2010 Dehaan et al. Anil Jain et al., Biometric template security, Jan. 2008, ACM, vol.
2010/0154024 Al 6/2010 Boxmeyer et al. 2008, pp. 1-17.
2010/0165876 Al 7/2010 Shukla et al. Sascha Konrad et al., Using Security Patterns to Model and Analyze
2010/0318658 Al* 12/2010 Zometal. 709/226 Security Requirements, 2003, Michigan State University, pp. 1-10.
2011/0320574 Al 12/2011 Felts Ankur Taly et al., Automated Analysis of Security-Critical JavaScript
2011/0320605 Al 12/2011 Kramer etal. APis, May 22-25, 2011, IEEE, pp. 363-378.
%83; 8}‘7‘;%3 ﬁ} g; %8}% %’qulgé}ntettaji Komathy K. et al., Component-based Security Model for XML Mes-
2012/0046630 AL 9012 Kiﬁ:‘; :1 : saging Services, Nov. 6-8, 2002, IEEE, pp. 132-133.
: U.S. Appl. No. 14/473,037, filed Aug. 29, 2014, Avinash Jaisinghani.
2013/0097651 Al 4/2013 Rendahl et al. . . : .
2013/0124807 Al 5/2013 Nielsen et al. AWS CloudFormation user guide, api version May 15, 2010, pp.
2013/0167211 Al 6/2013 Kamat 1-468 (2013).
2013/0212183 Al 8/2013 Ward U.S. Appl. No. 13/424,160, filed Mar. 19, 2012, Reto Kramer.
2013/0232480 Al 9/2013 Winterfeldt et al. U.S. Appl. No. 13/424,089, filed Mar. 19, 2012, Avinash Jaisinghani.
2013/0232498 Al 9/2013 Mangtani et al. Office Action from Chinese Application No. 201180031239.X,
2013/0283273 Al 10/2013 Miyazaki Dated Apr. 22, 2015 (English Translation and Chinese Version), pp.
1-20.
FOREIGN PATENT DOCUMENTS Office Action from Japanese Application No. 2013*518539, Dated
Jun. 2, 2015 (English Translation and Japanese Version), pp. 1-6.
Jp 2005056201 3/2005
Jp 2005266917 9/2005 * cited by examiner

U.S. Patent Nov. 3, 2015 Sheet 1 of 10 US 9,178,766 B2

100 \ 2
N

[| (BrowsE)
TEMPLATE
101

STACK MNAME A SIPP @
CREATE 8TACK

N 142(3)

[PROCESSOR(S) 114

\ NETWORK
\ 104

Menmory 118

(INTERFACE 118 | @@

|
|

|

|

|

! MPLATE-BASE

| Sreonoen || Cler=
|

|

|

|

|

|

|

§
|
|
|
|
{ 120 S i \
|
|
§
§
|
|

WW

W W A g
W W / v
TEMPLATE ACCOUNT y; RESCURCE PROVISIONING

SERVICE 106

RESCURCE 108(1} Resource 108(4) RESCURCE 108(N)

FIG. 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 10 US 9,178,766 B2

200
RN

, 202
s 1 <2xml versieon="1.07 /—-

4 encoding="UTrF-a" >

02(1) \ 1o _\ // <BessurceTemplate

s templateformatVersion="2510~

i 10-02">
% <Resnurcesr
5 <Respurcs
9 _ id="webTior3G"

type="CPZ. : Securitylroup”»

f ~. :

®| ©®

Receive Provide
template- indication of
based sucoess/iailure

request
@

Receive
femplate

@ \j \J

Store template A
<\\\’

< B
@/ Retrieve
femplate

NG

o,

DATABASE 122 o) Template
Undate RESOURCE PROVISIONING
N s.tpa ke SERVICE 108
@/’ SN 5
Y
@ @
/ @
Receive
indication of
@) sucoass/iaiiure
Atterpt o
provision
resource
®

Resource 108(1) Resource 108(2) Resourcs 108(N)

FIG. 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 10 US 9,178,766 B2

\

g N

RECEIVE AND STORE A TEMPLATE TO
FACILITATE PROVISIONING OF A STACK
OF NETWORK RESOURCES

304

Y

RECEIVE A REQUEST TO PRQVISION A
STACK OF NETWORK RESOURCES WITH
USE OF THE TEMPLATE

306 —\ v

PARSE THE TEMPLATE TO IDENTIFY
EACH OF THE NETWORK RESOURCES

~

308

ATTEMPT TO PROVISION EACH OF THE
NETWORK RESOURCES

310

RoLL BACK SUCCESSFULLY
PROVISIONED NETWORK RESOURCES

EACH PROVISIONING ATTEMPT
SUCCESSFUL?

NOTIFY USER THAT THE STACK WAS
NOT SUCCESSFULLY PROVISIONED

NOTIFY USER THAT THE STACK WAS
SUCCESSFULLY PROVISIONED

318—\ v

CHARGE A USER ACCOUNT FOR THE
SUCCESSFULLY PROVISIONED
RESOURCES

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 10 US 9,178,766 B2

112
R

102(1 ’
4 | | (Browse)
TEMPLATE
STACK NAME
CREATE STACK
CLIENT SiDE
SERVER SiDE — \
[INTERFACE 118]
r]
| S B |
3 BTACK BUILDER l
| SERVICE 402 |
| |
| l
RESQURCE i l
PROVISIONING < Stack BUILDER
SERVICE 106 | DAEMON 404 ’
| |
| |
| |
| |
| STACK |
| MAMAGEMENT |
i WORKFLOW 406 l
3 TEMPLATE-BASED]
LSTACK ZUILDER 120 |

—— —~

RESOURCE y
108N} -

FIG. 4

U.S. Patent Nov. 3, 2015 Sheet 5 of 10 US 9,178,766 B2

] | (BrOwsE)
TEMPLATE
3TAcK NaME
CuEnt SinE
SERVER SIDE \J
[INTERFACE 118 }
l"““'"“'"“‘“"'““"‘“"‘““‘““‘"‘““‘"“‘"“‘“"‘““‘“""‘“‘“‘“" “““““ -3
TEMPLATE-BASED
| STACK BUILDER 120 !
| STACK BUILDER
- ServICGE 402 <
Stack BUiLpeR
DAEMON 404
\,
r' ™)
STACK MANAGENMENT

SIVPLE
CREATE STACK WORKFLOW DELETE STACK

DECIDER 504 SERVICE 502 DECICER 506

CREATE DESCRIBE DELETE CREATE DERCRIBE DELeETE CREATE DEscrige Dersre
ACTMTY ACTIVITY ACTIVITY ACTMVTY ACTIVITY ACTIVITY ACSTIVITY ACTVITY ACTVITY
508 o1 512 508 510 81z 5068 518 512

!
|
i
: !
' |
i |
l I
! |
i |
' !
|
: WORKFLOW 408 !
l |
i
|
' !
! |
|
|
l l
! |
|
i !
|
' |
!

RESOURCE

108(2)

U.S. Patent Nov. 3, 2015 Sheet 6 of 10 US 9,178,766 B2

112 -
\

| | (BROWSE)
TEMPLATE

L]

STACK MamE

CREATE STACK

102(1) X

CLIENT SIDE

SERVER SIDE

A @ STHENTICA
(INTEREACE 11 ____________________>[AUTHENTICATION]

SERVICE 602

’ ‘ 18
Stack BULDER O

SERVICE 402

STACK BUILDER
DAEMON 404

TEMPLATE
METADATA
€08

N o A
AUDIT TRAIL

METADATA

RESOURCES
819

SIMPLE
WORKFLOW

ServICE 502

CREATE STACK
Decioer 504

UREATE
RESOURCE
ACTVITY 508

DEsCRrIBE
ReEsGURGE
ACTIVITY 510

EXAMPLE STACK CREATION

~ RESOURCE RESOURCE i
o 108(1) 108 s
=~ ~ - P - -

U.S. Patent

Nov. 3, 2015

102(1) —\‘

Sheet 7 of 10

112 -
N

US 9,178,766 B2

| (Browse)

TeMPLATE

I

Stack NaMe

AUTHENTICATION

Service 602

CREATE STACK
CUENT SiDE
SERVER SIDE v
\
{ INTERFACE 11 ——————b{
(3)

pe

KOG

S1AcK BUILDER
SERVICE 402

§04

AP SERVER

/

STACK
METADATA

TEMPLATE
METADATA
608

STACK
RESGURCES
804

°®

STACK BUILDER

DaEmOn 404

SiMPLE
YWORKFLOW
SERVICE 502

DELETE STACK
DecipeEr 508

EXAMPLE STACK DELETION

700

RESOURCE
ACTIVITY 512

BrELeTE

108(1) 10B(N) //'

~— —

U.S. Patent Nov. 3, 2015 Sheet 8 of 10 US 9,178,766 B2

[| (BrOwsE)
TEMPLATE

L]

STACK NAME

CREATE STACK

ERVER SiDE

[7x}

TERFACE 11) @ AUTHENTICATION
) - SERVICE 602

STACK BUILDER
SERVICE 402

AP SERVER

TempPLaTE
METADATA

METADATA

RESCURCES
G616 g

00

AN 108{1) 108N} e
\\\ -

EXAMPLE STACK ADOPTION
800

FIG. &8

U.S. Patent Nov. 3, 2015 Sheet 9 of 10 US 9,178,766 B2

908
/-

902 CREATE § .
STACK RECEIVE REQUEST TO
DELETE A
PENDING
804
\
START CREATE STACK
WORKFLOW
910 A4
906 CREATE

CREATE IN
PROGRESS

RECEIVE REQUEST TO

CANCEL
DELETE

PENDING

916

926 —\ v

NOTE INTO CREATE
STACK WORKFLOW

CREATE
COMPLETE

CREATE
FAILED

WORKFLOW
SUCCESS?

920
924
v v 928
CREATE
RECEIVE REQUEST TO INITIATE STACK CLEAN CANCEL IN
DELETE up PROGRESS

922

930

\

DeLETE CREATE STACK

PENDING § WORKFLOW COMPLETES
.

Y

942
932

CLEAN UP AND
RECEIVE
REQUEST TO

DeLETE

START DELETE STACK
WORKELOW

934 DELETE IN

PROGRESS

940
N

DeLeTe
FAILED

EXAMPLE INTERNAL
STACK STATE TRANSITION
900

DeLeTE
COMPLETE

WORKFLOW
SUCCESS?

FIG. 9

U.S. Patent Nov. 3, 2015 Sheet 10 of 10 US 9,178,766 B2

1002

CREATE IN
PROGRESS

1004

CREATION
SUCCESSFUL?

1006 1008

CREATE
FAILED

CREATE
COMPLETE

1010 —\ v

RECEIVE REQUEST TO
DELETE

4
J

:

1012 DELETE IN

PROGRESS

1016

DELETE
COMPLETE

EXAMPLE EXTERNAL
STACK STATE TRANSITION
1000

FIG. 10

US 9,178,766 B2

1
PROVISIONING MULTIPLE NETWORK
RESOURCES

BACKGROUND

Large-scale, network-based computing represents a para-
digm shift from traditional client-server computing relation-
ships. With large-scale, network-based computing platforms
(e.g., data centers), customers are able leverage shared
resources on-demand by renting resources that are owned by
third parties and that reside “in the cloud.” With these
resources, customers of the platform are able to launch and
maintain large applications without actually owning or ser-
vicing the underlying infrastructure necessary for these appli-
cations. As such, network-based computing platforms have
expanded the class of individuals and companies able to
effectively compete in the realm of computing applications.
Despite these advances, these individuals and companies may
still experience difficulty in working with hosts of these net-
work-based computing platforms for the purpose of provi-
sioning the desired resources.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The use of the same reference numbers
in different figures indicates similar or identical items or
features.

FIG. 1 illustrates an example environment in which users
of a user community may interact with a resource provision-
ing service for the purpose of provisioning multiple, different
network resources. Within this environment, the users may
provision the multiple resources with a single request to the
provisioning service in some implementations.

FIG. 2 illustrates an example process that the architecture
of FIG. 1 may implement for the purpose of provisioning
multiple, different network resources.

FIG. 3 is a flow diagram of an example process that the
resource provisioning service may implement for provision-
ing multiple different network resources. Here, the process
may comprise an atomic process in that the service either
successfully provisions each requested resource or none of
the requested resources.

FIG. 4 illustrates one example of a template-based stack
builder of the resource provisioning service of FIG. 1 in
greater detail.

FIG. 5 illustrates an example stack management workflow
of the resource provisioning service of FIG. 1.

FIG. 6 illustrates an example process of creating a stack
with use of a template within the architecture of FIGS. 1, 4,
and 5.

FIG. 7 illustrates an example process of deleting a stack
within the architecture of FIGS. 1, 4, and 5.

FIG. 8 illustrates an example process of adopting a stack
within the architecture of FIGS. 1, 4, and 5.

FIG. 9 illustrates an example transition of internal stack
state during requests to create or delete a stack.

FIG. 10 illustrates an example transition of external stack
state during requests to create or delete a stack.

DETAILED DESCRIPTION

This disclosure describes an architecture and techniques
for allowing users to provision multiple, different network
resources in an atomic manner and with a single call to a

25

30

40

45

50

55

2

resource provisioning service. In some instances, the mul-
tiple, different network resources comprise individual types
of resources that form a portion of one or more cloud-com-
puting platforms. For instance, one or more entities may host
and operate a cloud-computing platform that includes difter-
ent types of network resources, such a storage service, a load
balancing service, a compute service, a security service, or
any other similar or different type of network-accessible ser-
vice.

In one example, a user may desire to launch an application
(e.g., a web application) with use of multiple network
resources offered by one or more third-party entities. The user
may desire a load-balancing service to route workload
amongst multiple, different resources, a compute service to
host the application and to provide computing capability, an
online storage service to store client data, and a security
service to provide security to users of the application. While
a single entity may offer and operate each of these network
resources, multiple, different entities may offer and operate
one or more of these resources in other implementations.

In either event, a resource provisioning service may com-
municate with the user to provision these multiple, different
network resources. For instance, the user may make an initial
request to the provisioning service to provision a stack of
multiple network resources. In some instances, the request
may be based on a template that includes pre-populated
instructions for provisioning the multiple resources. This
template provides the user with a declarative language to
author a stack-creation request, allowing the user to focus on
which resources to provision and the interconnection of these
resources, rather than on how to build these stacks and which
application programming interface (API) calls to invoke. For
instance, the template may instruct (e.g., in extensible
markup language (XML) format, JavaScript Object Notation
(JSON), etc.) the provisioning service to provision one or
more different network resources.

In some instances, the user may then alter the instructions
in the template to specify particular parameters associated
with the resources and may save this template with the
changes as a new template. For instance, the user may specify
a particular desired size of a storage service, a number of
desired computers of the compute service, and the like to
create a new template. Furthermore, the user may assign a
logical name to one or more of the network resources or
components of the network resources when creating the new
template. The user may also alter the original template in any
other way by, for example, deleting portions of the instruc-
tions or adding new instructions to provision even more net-
work resources than the template previously called out to
create the new template. In another example, the user may
also make a call, within the template, to another template. As
such, templates may become building blocks for use in cre-
ating stacks of multiple, different network resources.

When the user is satisfied with the resulting instructions
(with or without alterations to the template), the user provides
instructions back to the provisioning service to store the
instructions as a new template. For instance, the user may
provide a text file comprising the new template. This template
may comprise instructions in XML or JSON format, or in any
other suitable format.

After the provisioning service stores the new template, the
user may then request to create a stack of resources with use
of'that template (or with use of another template). In response,
the provisioning service may retrieve and parse the template
to identify the stack of desired network resources. In one
example, for instance, the provisioning service may identify
that the user would like to employ a load balancing service of

US 9,178,766 B2

3

a particular size, a particular number of servers of a compute
service, a storage service of a particular size, and a particular
type of security service. In response, the provisioning service
may attempt to provision each of the requested network
resources on behalf of the user. That is, the provisioning
service may attempt to secure the desired services of the load
balancing service, the compute service, and the like.

Furthermore, the provisioning service may attempt to pro-
vision at least a portion of the network resources in parallel
with one another. For instance, the provisioning service may
determine dependencies amongst the multiple network
resources, and may attempt to provision the resources accord-
ing to these dependencies. The provisioning service may
identify implicit dependencies from the text file, or the pro-
visioning service may receive explicit dependencies specified
by the user.

In some instances, the provisioning service attempts to
provision atomically the stack of the network resources. That
is, the provisioning service will consider a stack successfully
created when the provisioning service is able to successfully
provision each of the requested network resources. In
response to successfully provisioning the stack, the provi-
sioning service may notify the user of this success. In
instances where the provisioning service fails to provision
one or more of the requested resources (e.g., after repeated
tries), the provisioning service may deem the provisioning of
the stack a failure and may roll back or tear down those
requested resources that the provisioning service has success-
fully provisioned. In addition, the provisioning service may
notify the user of this failure. As such, the user knows that at
the time of submitting the request to provision the stack of
multiple network resources that either all of the requested
resources will be provisioned, or none of them will.

The discussion begins with a section entitled “Example
Architecture” that describes an example architecture that may
implement the techniques introduced above. Next, a section
entitled “Example Processes” follows, and describes example
processes for provisioning multiple network resources using
the described example architecture of FIG. 1. A section
entitled “Example Resource Provisioning Service and Pro-
cesses” follows, describing specific examples of the resource
provisioning service described in FIG. 1 and processes that
the example service may implement for creating, deleting,
and adopting stacks. This section also describes example
transitions of internal and external stack state during these
processes. Finally, the discussion ends with a brief conclu-
sion.

This brief introduction, including section titles and corre-
sponding summaries, is provided for the reader’s conve-
nience and is not intended to limit the scope of the claims, nor
the proceeding sections. Furthermore, the techniques
described above and below may be implemented in a number
of' ways and in a number of contexts. Several example imple-
mentations and contexts are provided with reference to the
following figures, as described below in more detail. How-
ever, the following implementations and contexts are but a
few of many.

Example Architecture

FIG. 1 illustrates an example architecture 100 that may
implement the described techniques. The architecture 100
includes a user community 102 that communicates over a
network 104 with a resource provisioning service 106 for
provisioning multiple network resources 108(1), 108(2), . . .,
108(N) (or simply, “resources”). For instance, users of the
user community 102 may provision services of one or more

10

15

20

25

30

35

40

45

50

55

60

65

4

cloud-computing platforms, potentially hosted in one or more
large-scale data centers. As discussed above, these network
resources may include a storage service, a load balancing
service, a compute service, a security service, a domain name
system (DNS) service, or any other similar or different type of
network-accessible service. These resources 108(1)-(N) may
each be associated with a common entity or owner, with
separate entities or owners, or a combination thereof.

The network 104, meanwhile, is representative of any one
or combination of multiple different types of networks, such
as the Internet, cable networks, cellular networks, wireless
networks, and wired networks. The network 104 may be a
public or a private network. Furthermore, while FIG. 1 illus-
trates several arrows, each of the illustrated services may
communicate directly or indirectly with one another via the
network 104 or via a different network.

Intheillustrated example, a representative user 102(1) uses
a computing device 110 to access the resource provisioning
service 106 to request the provisioning of one or more of the
network resources 108(1)-(N). For instance, the user 102(1)
may desire to launch a web application using cloud-based
resources. As such, the user 102(1) may send a request to
provision multiple resources, such as load balancers from a
load balancing servers, databases from a storage service, and
the like.

In response to accessing the resource provisioning service
106 and making such a request, the resource provisioning
service 106 may serve a user interface (UI) 112 to the com-
puting device 110 of the user 102(1). FIG. 1 illustrates one
example of such a UL As illustrated, the Ul 112 includes a first
area 112(1) that allows the user to select a template to use for
making a request to provision a stack of a specific set of the
resources 108(1)-(N). The UI 112 also includes a second area
112(1) that allows the user 102(1) to create a name for the
stack that is to be created. Finally, the example UI 112
includes an icon 112(3) that, when selected, sends the request
to the resource provisioning service 106. In response to
receiving this request, the resource provisioning service 106
may attempt to create the stack of resources specified in the
template, as described in detail below. While F1G. 1 illustrates
one example Ul, other implementations may employ any
other similar or different UI.

As illustrated, each of the resources 108(1)-(N) and the
resource provisioning service 106 is embodied as one or more
servers that collectively have processing and storage capa-
bilities to receive and send requests. These servers may be
embodied in any number of ways, including as a single server,
a cluster of servers, a server farm or data center, and so forth,
although other server architectures (e.g., mainframe) may
also be used.

The resource provisioning service 106 comprises one or
more processors 114 and memory 116, which stores an inter-
face 118 and a template-based stack builder 120. The service
106 also stores or has access to databases 122, 124, and 126.
The interface 118 comprises a network-accessible interface
that allows users of the user community to access and com-
municate with the resource provisioning service 106. For
instance, users of the user community 102 may make calls
into the interface via certain public APIs. In these and other
instances, users of the user community 102 access the inter-
face 118 for the purpose of requesting to provision one or
more of the network resources 108(1)-(N).

The template-based stack builder 120, meanwhile, func-
tions to receive requests from users to create a stack of net-
work resources (as described above) and to provide an appro-
priate template to the users based on the requests. For
instance, in the illustrated example the builder 120 may

US 9,178,766 B2

5

receive a request to provision a named stack of resources with
use of a particular template selected by the user 102(1). In
response, the builder 120 may locate the selected template
from the database 124, which may store or otherwise have
access to previously created templates. The resource provi-
sioning service 106, users of the user community 102, and/or
other entities may have previously created some or all of the
templates within the database 124 in some instances.

After locating the selected template, the builder 120 pro-
vides this template to the computing device 110 of the user
102(1). This template may comprise pre-populated instruc-
tions for provisioning a particular set of the network resources
108(1)-(N). The user 102(1) may then use the template in
whole or in part to form the actual request for resources. For
instance, the user may alter certain parameters of the pre-
populated instructions to specify a size of a requested
resource, a number of components (e.g., computers, data-
bases, etc.) of a requested resource, a particular version of a
resource, or any other parameter. In some instances, the user
102(1) may specify logical names within the template for one
or more components of the resource. These logical names
comprise names chosen by the user for the convenience of the
user when later managing these resources by making status or
request calls to the resource provisioning service 106.

Additionally or alternatively, the user 102(1) may add
instructions to the template to call yet another resource(s) or
may remove instructions effective to remove a resource(s)
from being provisioned. After moditying (or refraining from
modifying) the template provided by the service 106, the user
102(1) submits the altered template for storage by the
resource provisioning service 106 as a new template. The user
102(1) may then send a request to provision the resources as
specified by the new template. In some instances, the template
may form a text file that includes instructions in extensible
markup language (XML) format, JavaScript Object Notation
(JSON) format, or the like.

Upon receiving a request to provision resources based on a
template, the builder 120 may retrieve and parse the template
(e.g., which may be in the form of a text file) to determine the
identity and parameters (e.g., size, etc.) of the desired
resources, as well as the order in which to provision these
resources. The builder 120 may determine the order based on
implicit dependencies gleaned from the actual instructions of
the text file, and/or based on explicit dependencies provided
by the user 102(1).

After parsing the file, the builder 120 may then attempt to
provision each of the requested resources on behalf of the
user, potentially in an atomic manner. In these instances, the
resource provisioning service 106 attempts to provision each
of the requested ones of the network resources 108(1)-(N)
prior to notifying the user. If the resource provisioning service
106 successfully provisions each of the requested resources,
then the resource provisioning service 106 notifies the user
102(1) that the service 106 has successfully created the
requested stack. The service 106 may also update the data-
base 122 to reflect the newly-provisioned stack. Finally, the
service 106 may charge costs associated with these provi-
sioned resources to an account of the user 102(1), maintained
by the database 126.

In instances where the builder 120 of the resource provi-
sioning service 106 is unable to successfully provision each
requested resource (e.g., after multiple retries), the service
106 may notity the user 102(1) that stack creation has failed.
In addition, the service 106 may roll back or tear down those
ones of the requested network resources that the service 106

10

15

20

25

30

35

40

45

50

55

60

65

6

has successfully provisioned. The service 106 may or may not
charge a user account for these successfully provisioned
resources.

By operating in this atomic manner, the resource provision-
ing service 106 provides comfort to the user 102(1), who
knows that the service 106 will either fully succeed in provi-
sioning the requested stack of resources or will return to the
state of the system prior to receiving the user’s request. That
is, even in the latter instances the user 102(1) will not be left
with a half-completed and non-functioning stack, as the ser-
vice 106 will roll back each provisioned network resource. In
addition to providing this comfort, the architecture 100 and
the associated techniques allow the user to make a single
request to the resource provisioning service 106 rather than
multiple requests corresponding to each requested resource.
The service 106 further eases this single call by providing a
template to the user 102(1) on which to base the request.

Example Processes

FIG. 2 is an example process 200 that the architecture 100
of FIG. 1 may implement. This process (as well as other
processes described throughout) is illustrated as a logical flow
graph, each operation of which represents a sequence of
operations that can be implemented in hardware, software, or
a combination thereof. In the context of software, the opera-
tions represent computer-executable instructions stored on
one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions
include routines, programs, objects, components, data struc-
tures, and the like that perform particular functions or imple-
ment particular abstract data types. The order in which the
operations are described is not intended to be construed as a
limitation, and any number of the described operations can be
combined in any order and/or in parallel to implement the
process.

For discussion purposes, the process 200 (and the other
processes) is described with reference to the architecture 100
of FIG. 1, although other architectures may implement this
process.

In this example, at “1,” the resource provisioning service
106 receives, from the computing device 110 of the user
102(1), a new template from a user that is effective to attempt
to provision a stack of multiple, different network resources
on behalf of the user. For instance, the user 102(1) may have
submitted this template via a Ul served by the resource pro-
visioning service 106. Further, this template may have been
based on a template previously stored by the service. That is,
the user 102(1) may have requested and received a template
viathe UI 112 of FIG. 1, modified this template to form a new
template, and then sent the new template for storage by the
service 106. In some instances, the user 102(1) may request
storage of the template via a “Register Template” call to the
resource provisioning service 106. At “2.” the resource pro-
visioning service 106 stores the received template in the data-
base 124.

At “3,” the resource provisioning service 106 receives a
request from the user 102(1) to provision a stack of resources
on behalf of the user. In this example, the user 102(1) requests
that the service 106 provision the resources in the manner
specified by the template stored at “2.” That is, at “3,” the user
102(1) may call the template previously created by the user
102(1) stored by the service 106. Of course, in other
instances, the user 102(1) may call a template created by
another user of the user community 102, by the resource
provisioning service 106, and/or by any other entity.

US 9,178,766 B2

7

FIG. 2 illustrates an example of a template 202, which
comprises instructions in XML format for provisioning a set
of'the network resources 108(1)-(N). While the example tem-
plate 202 illustrates one example format of these instructions,
the provided template may comprise other text-based instruc-
tions, selectable icons, radio buttons, or any other interface
(graphical or otherwise) with which the user may request to
provision multiple ones of the network resources 108(1)-(N).

At “4,” in this example the resource provisioning service
106 retrieves the template on which the user 102(1) based his
or her request. In this example, the user 102(1) specifies the
recently stored template created by the user and, hence, the
service 106 retrieves this template from the database 124. As
discussed above, the user 102(1) may have customized this
template. For instance, the user 102(1) may have specified
values of certain parameters, such as particular versions of the
resources, sizes of the resources, logical names of the
resources, and the like.

At “5.” the resource provisioning service 106 parses the
template to identify the requested ones of the network
resources 108(1)-(N) and to identify an order in which to
attempt to provision these requested resources. The service
106 may base this order in whole or in part upon implicit
and/or explicit dependencies. The service 106 may identify
the implicit dependencies by analyzing characteristics of the
resources that the user 102(1) requests. The service 106 may
identify explicit dependencies in response to receiving these
dependencies explicitly from the user 102(1). For instance,
the user 102(1) may state a desired order in which to attempt
to provision the resources, in whole or in part.

At “6,” the resource provisioning service 106 attempts to
provision the requested network resources, potentially in the
determined order. In this example, the user 102(1) has
requested to provision the network resources 108(1), 108(2),
and 108(N). In some instances, the resource provisioning
service 106 attempts to provision at least some of these
requested resources in parallel.

At “7.” the resource provisioning service 106 receives an
indication from each of the resources indicating whether or
not the service 106 successfully provisioned the respective
resource (after one or more multiple tries). In this example,
each of the resources provides an indication of success and, as
such, the resource provisioning service 106 considers the
creation of the stack a success. As such, the resource provi-
sioning service 106 updates the database 122 to reflect the
new stack at “8.” The resource provisioning service 106 may
also update the database 126 to associate this stack with the
account of the user 102(1) and to charge the account of the
user 102(1) for the created resources.

Finally, at “9,” the resource provisioning service 106 pro-
vides an indication of success or failure to the user 102(1). For
instance, the resource provisioning service 106 may provide
this indication to the computing device 110 or may commu-
nicate this indication via another communication channel. In
this example, the resource provisioning service 106 provides
an indication that the service 106 has successfully provi-
sioned each of the requested network resources 108(1), 108
(2), and 108(N) on behalf of the user 102(1). In some
instances, the user 102(1) may send a query regarding the
status of the requested stack creation prior to receiving the
indication at “9.” The service 106 may in turn respond to this
request, informing the user 102(1) as to whether or not the
stack has yet to be successfully created.

FIG. 3 is a flow diagram of an example process 300 that the
resource provisioning service 106 may implement for provi-
sioning multiple different network resources. Here, the pro-
cess 300 may comprise an atomic process in that the service

10

20

25

30

35

40

45

50

55

60

65

8

either successfully provisions each requested resource or
none of the requested resources.

The process 300 includes, at 302, the resource provisioning
service 106 receiving a template from a client computing
device and, in response, the service storing the received tem-
plate. This template may facilitate provisioning of a stack of
network resources. At 304, the resource provisioning service
106 receives a request to provision a stack of network
resources with use of the template. In some instances, the
template and the request may be received simultaneously
(e.g., the template may comprises the request), although they
need not. At 306, the resource provisioning service 106 parses
the template to identify the resources and, at 308, the resource
provisioning service 106 attempts to provision each of the
identified resources.

At 310, the resource provisioning service 106 determines
whether each provisioning attempt has proven successful. If
not, then the resource provisioning service 106 rolls back
each successfully provisioned network resources at 312. In
some instances, the service ceases attempting to provision
resources as soon as a single resource call fails. In either
instance, the resource provisioning service 106 also proceeds
to notify the requesting user of the failure at 314. In some
instances, the resource provisioning service 106 may also
charge a user account of the requesting user for the success-
fully provisioned resources (e.g., as soon as the service 106
successfully provisions these resources and without regard as
to whether or not the creation of the entire stack succeeds).

If, however, the resource provisioning service 106 deter-
mines that each provisioning attempt has proven successful,
then the resource provisioning service 106 notifies the
requesting user of this success at 316. At 318, the resource
provisioning service 106 may charge a user account of the
requesting user for the successfully provisioned resources.

Example Resource Provisioning Service and
Processes

FIG. 4 illustrates one example of the resource provisioning
service 106 of FIG. 1 in great detail. As illustrated, the
resource provisioning service 106 includes the interface 118
and the template-based stack builder 120, as discussed above.
In one example, the template-based stack builder 120 may
include a stack builder service 402, a stack builder daemon
404, and one or more stack management workflows 406.

As discussed above, the interface 118 is a network-facing
component that allows users of the user community 102 to
call through public APIs. One function of this layer is to
accept, validate, authenticate, authorize, and route requests to
the network resources 108(1)-(N). Other functions include
throttling, request logging, and delegation token exchange.
The interface 118 may proxy one or more of the following
APIs for the network resources 108(1)-(N): Register Tem-
plate, Describe Templates, Delete Template, Create Stack,
Describe Stack, Delete Stack, Describe Stack Resources,
Describe Stack Events, and Adopt Stack.

The stack builder service 402, meanwhile, provides con-
crete implementations of various APIs fronted by the inter-
face 118. This service 402 may also provide one or more
internal APIs. APIs provided by this service can be classified
as template management APIs, stack management APIs, and
audit trail APIs in some instances.

Template management APIs are responsible for the storage
and processing of the templates (e.g., in the database 124 of
FIG. 1). Raw, user-provided templates are accepted and vali-
dated before being transformed into a canonical/reduced
form for storage alongside the raw original. The stack builder

US 9,178,766 B2

9

service 402 provides the ability to look up these uploaded
templates by name, and to mark them as deprecated. Example
template management APIs may include Register Template,
Describe Template, and/or Delete Template.

Stack management APIs, meanwhile, are the entry point
for initiating stack creation and deletion and obtaining stack
description. The stack creation and deletion calls may be
handled in an asynchronous manner. That is, the stack builder
service 402 validates and records user requests for stack
creations and deletions, while the stack builder daemon 404
asynchronously handles the actual processing of the users’
intent. Stack management APIs also enable the reading and
writing of stack resource data into underlying storage. Users
of'the user community 102 can request to inspect the logical-
physical bindings for their stack’s resource via these APIs.
Similarly, when the stack management workflows 406 allo-
cate or de-allocate a stack’s resources, the stack management
workflows 406 use the stack management APIs to record/
update the physical-logical mappings. The stack manage-
ment APIs may include Create Stack, Describe Stack, Delete
Stack, Adopt Stack, Describe Stack Resources, Add Stack
Resource (Internal APIs), and/or Delete Stack Resource (In-
ternal APIs).

The stack builder service 402 may also maintain audit trail
APIs, which enable logging of resource creation/deletion
actions performed on behalf of a user. In some instances, each
action is logged for the purpose of maintaining a log of costs
charged to the each user account in the database 126. In
addition, each user of the user community 102 having an
account within the database 126 may retrieve the user’s log by
invoking the Describe Stack Events API. The audit trail APIs
may include Describe Stack Event and/or Add Stack Event.

The stack builder daemon 404, meanwhile, is responsible
for integrating the stack management worktlows 406 with the
job state storage described above. This daemon 404 may
periodically check the stack request table for new/un-started
requests and may spawn stack management workflows 406 to
handle these requests. The stack builder daemon 404 may also
periodically check up on existing stack management work-
flows 406 and may mark some of these workflows as com-
plete in the job storage records. This may effectively decouple
stack management workflows 406 calls from any front-end
services.

Finally, the stack management workflows 406 are respon-
sible for executing various steps for the creation and configu-
ration of network resources 108(1)-(N) during stack creation,
as well as during graceful shutdown and termination of net-
work resources 108(1)-(N) during stack deletion.

FIG. 5 illustrates an example stack management workflow
406 of the resource provisioning service 106 of FIGS. 1 and
4. As illustrated, the example stack management workflow
406 is built atop a Simple Workflow Service (SWF) 502. The
stack management workflow 406 comprises two worktlow
types: a Create Stack Workflow Type and A Delete Stack
Workflow Type. The Create Stack Workflow Type is associ-
ated with a create stack decider 504, while the Delete Stack
Workflow Type is associated with a delete stack decider 506.
In addition, these workflows are associated with correspond-
ing create activities 508, describe activities 510, and delete
activities 512, which together enable the creation, descrip-
tion, and deletion of network resources 108(1)-(N) in the
context of a stack.

FIG. 6 illustrates an example process 600 of creating a
stack with use of a template within the architecture of FIGS.
1, 4, and 5. At “1,” the example user 102(1) calls the Creat-

10

15

20

25

30

40

45

50

55

60

65

10

eStack API, passing in the template name and stack name to
the interface 118. At “2.” an authentication service 602
authenticates the request.

At “3,” the interface 118 delegates the request to the stack
builder service 402 and, particularly, to an API server 604 of
the stack builder service 402. The stack builder service 402
first validates the stack name to ensure that the chosen name
is not a duplicate of another stack by referencing stack
resources 606. The stack builder service 402 then verifies
whether the template name is valid by referencing template
metadata 608. If both the stack name and the template name
are valid, the stack builder service 402 persists stack metadata
(Namespace, StackName, TemplateName, Status=CREATE-
PENDING) in a stack metadata (SDB) table 610 and a suc-
cessful reply is sent back to the user 102(1).

At “4.” The stack builder daemon 404 picks up stacks with
Status=CREATE_PENDING and starts a CreateStack work-
flow, passing the Namespace, TemplatelD, StackID to the
created workflow. The daemon 404 then updates the status of
those stacks to CREATE_IN_PROGRESS. The daemon 404
also enters an audit trail entry into an audit trail table 612
indicating that the stack creation is in progress.

At “5.” create stack deciders 504 of the CreateStack work-
flow type periodically poll the SWF 502 for decision events.
When one or more of the CreateStack deciders 504 receives
the start workflow request from SWF 502, the respective
decider 504 starts processing the create workflow request.

At “6,” upon receiving the create stack request, the Creat-
eStack decider 504 enters an entry into the audit trail table 612
regarding the stack creation.

At “7.” the create stack decider 504 contacts the template
service (e.g., template metadata 608) to obtain the internal
representation of the template for the given template 1D.
Upon obtaining the template, the decider 504 computes the
order in which to create the resources. This may be based on
implicit dependencies from the template or text file or on
explicit dependencies specified by the user 102(1). Once the
decider 504 determines the order of resource creation, the
decider 504 schedules the first set of CreateResource activi-
ties 508 corresponding to the network resources 108(1)-(N)
in the computed list (along with configuration metadata cap-
tured in the template) to successfully create and configure one
of the network resources 108(1)-(N).

At “8,” the CreateResource activities 508 periodically poll
the SWF 502 for work. At “9.” upon receiving work to create
and configure a specific resource from the SWF 502, the
CreateResource activity 508 contacts the corresponding net-
work resource to create and configure the resource. Once the
create-resource call to the resource returns successfully, the
CreateResource activity 508 indicates to the SWF 502, viathe
successful completion of the activity, that the resource has
successful been created. The physical identifier of the
resource that was successfully created by the activity may
accompany the activity completion indication.

If, however, the CreateResource activity 508 receives an
error/failure from the resource, the activity 508 reports a
failure to the SWF 502 via the activity failed API. The error/
failure message obtained from the resource by the activity
508 may accompany the activity-failed call to the SWF 502.

At “10,” The CreateStack deciders 504 periodically poll
the SWF 502 for work. At “11,” if one of the CreateStack
deciders 504 receives the information indicating that the cre-
ate resource activity 508 completed successfully, then the
CreateStack decider 504 updates the binding service with the
information regarding the resource that was created. This
includes the mapping of logical resource identifier to physical
resource identifier and a creation timestamp. The decider 504

US 9,178,766 B2

11

also enters an entry into the audit trail table 612 regarding the
successful creation of the resource. The decider 504 then
schedules a describe resource activity 510 to describe the
status of the created resource.

If the decider 504 receives the information that the create
resource activity timed out, then the decider 504 reschedules
the create resource activity 508 for specified number of times
with back off Steps 8-11 may repeat until the activity 508
completes successfully or until the maximum number of
retries is reached. If the maximum number of retries for the
create resource activity is reached, the decider 504 enters a
corresponding entry into the audit trail table 612 and initiates
the closure of the workflow. If the decider 504 receives the
information that the create resource activity 508 failed, the
decider 504 examines the error code returned by the activity
508. Based on the error code, the decider 504 may handle the
error in a fashion similar to an activity timeout and may retry
the activity.

Conversely, based on the error code, the decider 504 may
decide not to retry the activity and may instead update the
binding service with the information regarding the failure in
resource creation. This update may include logging the error
messages received by the activity 508 while trying to create
the resource, entering a corresponding entry into the audit
trail table 612, and initiating the closure of the workflow.

When the decider 504 initiates the closure of the workflow,
the following sequence of steps may be executed. First, the
decider 504 annotates the workflow (using the state field of
the workflow record) with the CREATE_FAILED tag. Once a
workflow has been annotated with the CREATE_FAILED
tag, no decider 504 will schedule any more activities for that
workflow. Instead, once the previously scheduled create
resource activities 508 for the workflow have been accounted
for (e.g., either completed or failed), or a maximum number
of retries has been reached, the decider 504 closes the work-
flow (via the CloseWorkflow SWF API) with an error mes-
sage indicating that the stack could not be created success-
fully.

At “12,” The DescribeResource activities 510 periodically
poll the SWF 502 for work. At “13,” upon receiving work to
describe a specific network resource from the SWF 502, the
DescribeResource activity 510 contacts the corresponding
network resource to check the status of the resource. If the
resource is in “active” state, the activity 510 completes suc-
cessfully. Otherwise, the activity 510 reports the failure to the
SWF 502.

At “14,” The CreateStack decider 504 periodically polls
the SWF 502 for work. If the CreateStack decider 504
receives the information indicating that the describe resource
activity 510 completed successfully, the decider 504 enters a
corresponding entry into the audit trail table 612 and once
again contacts the template service (e.g., template metadata
608) to obtain the internal representation of the template. The
decider 504 compares the resources described in the template
to the resources that have been created (obtained from the
workflow stack history) for the given stack and determines the
resources that are yet to be created. If the set of resources to be
created is empty, which indicates that the stack has been
successfully created, the decider 504 closes the workflow. If,
however, the resources are yet to be created, the decider 504
schedules the next batch of create source activities 508. The
process 600 may repeat steps 8-14 until the entire stack is
built.

At “15.” if the decider 504 receives the information indi-
cating that the describe resource activity 510 has timed out or
failed, the decider 504 reschedules the create resource activ-
ity 510 for a specified number of times with back off. The

10

15

20

25

30

35

40

45

50

55

60

65

12

process 600 may repeat steps 12-14 until the activity com-
pletes successfully or the maximum number of retries is
reached. If the maximum number of retries for the create
resource activity 508 is reached, the decider 504 enters a
corresponding entry into the audit trail table 612 and initiates
the closure of the workflow. The process by which the decider
closes the workflow may be the same as the detailed earlier in
step 10.

At “16,” the stack builder daemon 404 periodically polls
the SWF 502 to check if the workflow is complete for stacks
with status=CREATE-IN-PROGRESS. Once the stack
builder daemon 404 finds that the stack creation has been
successfully completed, the stack builder daemon 404 marks
the stacks status as CREATE-COMPLETE. However, if the
stack builder daemon 404 observes that the stack creation has
failed, via the CREATE-FIELD tag in the workflow status,
the daemon 404 marks the stack status as CREATE-FAILED.
Details of clean up of a failed stack creation are discussed
below in the delete stack section. Once the stack creation
workflow closes, the stack builder daemon 404 enters an entry
into the audit trail table 612 regarding the success/failure of
the stack creation.

FIG. 7 illustrates an example process 700 of deleting a
stack within the architecture of FIGS. 1, 4, and 5. At “1,” the
example user 102(1) calls the DeleteStack API passing in a
stack name to the interface 118. At “2.” the authentication
service 602 authenticates the request.

At “3,” interface 118 delegates the request to the stack
builder service 402 where the stack name is validated. The
status of the corresponding stack is marked as DELETE_
PENDING.

At “4.” the Stack Builder daemon 404 looks for stacks in
DELETE_PENDING status and starts a workflow of type
DeleteStack by contacting the SWF 502. Inputs to the work-
flow include the stackld and the template ID used by the stack.
The stacks status in the stack metadata 610 is now updated to
DELETE_IN_PROGRESS. The Stack Builder daemon 404
writes an entry into the audit trail table 612 indicating that the
start deletion has started.

At “5,” the deciders 506 of the DeleteStack workflow type
periodically poll the SWF 502 for decision events. When one
or more of the DeleteStack deciders 506 receives the start
workflow request from the SWF 502, the decider 506 begins
processing the delete stack request.

At “6,” upon receiving the delete stack request, the decider
506 enters a corresponding entry into the audit trail table 612.
At 7. the decider 506 contacts the template service (e.g., the
template metadata 608) to obtain the template corresponding
to the stack that is being deleted. Upon receiving the template,
the decider 506 computes the order in which the resources are
to be deleted. This may be done based on dependencies that
are implicit in the stack and/or the template, and/or based on
explicit dependencies that the user 102(1) provides.

At “8,” based on the resource order computed in step 7, the
decider 506 contacts the binding service to obtain the physi-
cal resource identifier and the resource type of the resources
that are not in DELETED state. Upon obtaining the resource
type and identifier, the decider 506 schedules the appropriate
delete resource activity 512 to delete the resource that is part
of the given stack. If the decider 506 is unable to find any
resource that is not in DELETED state, the stack deletion is
complete. The decider 506 then closes the workflow.

At“9,” The DeleteResource activities 512 periodically poll
the SWF 502 for work. At “10,” upon receiving work to delete
a network resource from the SWF 502, the DeleteResource
activity 512 contacts the corresponding network resource to
delete the resource. Input to the specific DeleteResource

US 9,178,766 B2

13

activity 512 includes the physical identifier of the resource to
be deleted. Upon submitting a delete request to the resource,
the DeleteResource activity 512 periodically polls the corre-
sponding resource to check the status of the resource. Once
the resource declares that the requested resource has been
successfully deleted, the activity 512 indicates to the SWF
502, via the successful completion of the activity 512, that the
deletion has successtully occurred. If the network returns a
particular error type, the activity 512 reports a failure and
accompanies the error message returned by the resource to
the decider 506 along with the ActivityFailed API.

At “11,” deciders of 506 of the DeleteStack workflow type
periodically poll the SWF 502 for decision events. At “12.”
upon receiving the information regarding the activity comple-
tion, the binding service is updated to reflect the deletion of a
resource within the stack. The decider 506 enters a corre-
sponding entry into the audit trail table 612 regarding the
successful resource deletion. The process 700 may repeat
steps 7-12 until the entire stack is deleted. If the decider 506
receives information that the delete resource activity 512 has
timed out or failed, the decider 506 reschedules the delete
resource activity 506 a specified number of times. If the
maximum number of retry attempts has been exceeded, the
decider 506 updates the status and reason filed of the
resources in the binding service to DELETE_FAILED and
“max delete attempt reached.” The decider 506 also enters a
corresponding entry in the audit trail table 612 and annotates
the workflow with the DELETE_FAILED tag using the status
filed in the workflow metadata.

At “13,” the stack builder daemon 404 periodically polls
the SWF 502 to check if the workflow is closed for stacks with
status=DELETE_IN_PROGRESS. Once it finds that the
stack deletion has been successfully completed, the stack
builder daemon 404 marks the stacks status to DELETE_
COMPLETE. If the daemon 404 discovers that the workflow
has been annotated with the DELETE_FAILED tag, it
updates the stack status to DELETE_FAILED.

In some instances, the example user 102(1) may initiate a
deletion of a stack while the creation of a stack is in progress
and before the stack is fully created. In this instance, the
resource provisioning service 106 may interpret this as a
request to terminate the stack creation. Under this scenario,
the stack builder service 402 marks the stack status as CRE-
ATE_CANCEL_PENDING. The stack builder daemon 404
scans for stacks in CREATE_CANCEL_PENDING status
and notes into the corresponding create stack workflow
requesting the workflow to terminate. The stack builder dae-
mon 404 then updates the stack status to CREATE_
CANCEL_IN_PROGRESS.

Upon receiving the note event, the CreateStack decider 504
initiates closure of the workflow by waiting for outstanding
activities to be accounted for. The procedure for closing the
workflow may be the same as the procedure described above
in the create stack scenario.

The stack builder daemon 404 periodically polls the SWF
502 to check if the create stack workflow is closed for stacks
with status CREATE_CANCEL_IN_PROGRESS. Once the
stack builder daemon 404 discovers that the stack creation has
been terminated, the stack builder daemon 404 marks the
stacks status to DELETE_PENDING. The process of stack
deletion cleans up any resources that were created during
stack creation.

FIG. 8 illustrates an example process of adopting a stack
within the architecture of FIGS. 1, 4, and 5. At “1,” the
example user 102(1) calls the AdoptStack API, passing in the

10

15

20

25

30

35

40

45

50

55

60

65

14

template name, stack name, and a map that captures the stack
binding. At “2.” The authentication service 602 authenticates
the request.

At “3,” the interface 118 delegates the request to the stack
builder service 402 where the stack name is validated (e.g.,
checked for duplicates etc). If the stack name is invalid, a fault
is returned to the user. The Stack builder service 402 attempts
to validate the template name, and if the template name is
valid, the service 402 then validates the contents of the stack
binding map to ensure that the template identified by the
template name and the binding map are consistent with one
another. If the template name is invalid, or the template iden-
tified by the name and the binding map are inconsistent, a
fault is returned to the user.

At “4) the stack builder service 402 then invokes the
DescribeResource API describing the resources listed in the
template to verify that the resource listed in the binding map
exists and is owned by the user 102(1). If any of the resources
listed in the binding map do not exist, a fault is returned to the
user. The stack builder service 402 creates a unique identifier
for the stack and inserts a new entry into the binding service
for the newly generated stack identifier with the binding
information present in the binding map. The stack builder
service 402 also inserts/updates the stack metadata table 610
to add/update the association between the user-provided
stack name and the generated stack identifier. The stack
builder service 402 also inserts an entry into the audit trail
table 612 indicating the adoption of the stack.

FIG. 9 illustrates an example transition of internal stack
state during requests to create or delete a stack. In this
example, the internal state of the example stack state is ini-
tially set to “Create Stack Pending,” as shown at 902. At 904,
the resource provisioning service 106 starts a create stack
workflow. As shown at 906, this alters the internal stack state
to “Create in Progress.” If, however, the service 106 receives
arequest to delete the stack as shown at 908, the internal stack
state becomes “Create Cancel Pending,” as shown at 910.

The service 106 may also receive a request to delete the
stack at 912 while the state is in “Create in Progress” (as
shown at 906). In response, the internal stack state will also
transition to “Create Cancel Pending,” as shown at 910.

When a create stack workflow is in progress and no
requests to delete the stack are received, the service 106
determines whether or not the create stack workflow is suc-
cessful at 914. If so, then the internal stack state transition to
“Create Complete” at 916. If not, then the internal stack state
transitions to “Create Failed” at 918. In the former instances,
the service 106 may receive a request to delete the stack at
920. In this instance, the internal stack state transitions to
“Delete Pending,” as shown at 922.

In instances where the internal stack state becomes “Create
Failed,” meanwhile, the transition 900 initiates a stack clean
up at 924. Thereafter, the internal stack state transitions to
“Delete Pending,” as shown at 922.

Returning to the internal stack state of “Create Cancel
Pending” at 910, the transition 900 notes into the create stack
workflow at 926, as discussed above. The internal stack state
then transitions to “Create Cancel in Progress™ at 928. There-
after, the create stack workflow completes at 930 and the stack
state is updated to “Delete Pending,” as shown at 922.

When the internal stack state is “Delete Pending,” a delete
stack workflow begins at 932. As shown at 934, the internal
stack state then transitions to “Delete in Progress.” At 936, the
service 106 determines whether or not the delete stack work-
flow has successfully completed. If so, then the internal stack
state transitions to “Delete Complete” at 938. If not, then the
internal stack state transitions to “Delete Failed” at 940.

US 9,178,766 B2

15

Thereafter, the service 106 may clean up the workflow and
may again receive a request to delete the stack at 942. In
response, the internal stack state transitions to “Delete Pend-
ing” as shown at 922.

FIG. 10 illustrates an example transition 1000 of external
stack state during requests to create or delete a stack. In this
example, the external state of the example stack state is ini-
tially set to “Create in Progress,” as shown at 1002. At 1004,
the resource provisioning service 106 determines whether or
not the creation is successful. If so, then the external stack
state transitions to “Create Complete” at 1006. If not, then the
external stack state transitions to “Create Failed” at 1008.

At 1010, the service 106 receives a request to delete the
stack. As such, the external stack state transitions to “Delete
in Progress” at 1012. At 1014, the service 106 determines
whether or not the deletion is successful. If so, then the
external stack state becomes “Delete Complete” at 1016. If
not, then the external stack state becomes “Delete Failed” at
1018. Thereafter, the service 106 may again receive a request
to delete the stack, as shown at 1010.

CONCLUSION

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claims.

What is claimed is:

1. One or more non-transitory computer-readable media
storing computer-executable instructions, when executed,
cause one or more processors to perform acts comprising:

receiving over a network, from a computing device of an

external user of a resource provisioning service com-
prising multiple, different network resources, a template
comprising pre-populated instructions effective at least
in part to provision a stack of different types of the
multiple, different network resources according to one
or more parameters associated with each of the multiple,
different network resources, wherein the one or more
parameters are specified in the template received from
the computing device of the external user;

storing the template at least partly in response to the receiv-

ing;

receiving, from the computing device of the external user,

a request to provision the stack of multiple, different
network resources with use of the template;
retrieving and parsing the template to identify each of the
multiple, network resources requested for provisioning
and each of the associated one or more parameters; and

at least partly in response to the parsing, attempting to
provision each of the multiple, different network
resources according to the associated one or more
parameters on behalf of the user, wherein the attempt to
provision each of the multiple, different network
resource is based at least in part on the template received
from the computing device of the external user.

2. One or more non-transitory computer-readable media as
recited in claim 1, wherein the different types of network
resources comprise a storage service, a load balancing ser-
vice, a compute service, or a security service.

3. One or more non-transitory computer-readable media as
recited in claim 1, wherein the multiple, different network
resources form at least a portion of a cloud-computing plat-
form.

10

15

20

25

30

35

40

45

50

55

60

65

16

4. One or more non-transitory computer-readable media as
recited in claim 1, wherein each of the one or more parameters
associated with a respective one of the multiple, different
network resources specifies one of a requested size, a capa-
bility, or a characteristic of the respective network resource.

5. One or more non-transitory computer-readable media as
recited in claim 1, wherein the template identifies at least one
of'the multiple, different network resources by alogical name
specified by the user.

6. One or more non-transitory computer-readable media as
recited in claim 1, wherein the template specifies a particular
version of multiple different versions for at least one of the
multiple, different network resources.

7. One or more non-transitory computer-readable media as
recited in claim 1, wherein the attempting to provision each of
the multiple, different network resources comprises attempt-
ing to provision at least two of the multiple, different network
resources in parallel.

8. One or more non-transitory computer-readable media as
recited in claim 1, wherein the attempting to provision each of
the multiple, different network resources comprises attempt-
ing to provision each of the multiple, different network
resources in an order based at least in part on specified depen-
dencies between a portion of the multiple, different network
resources.

9. One or more non-transitory computer-readable media as
recited in claim 8, wherein the specified dependencies com-
prise implicit dependencies, and wherein the parsing of the
template is effective to identify the implicit dependencies
between the portion of the multiple, different network
resources.

10. One or more non-transitory computer-readable media
as recited in claim 8, wherein the specified dependencies
comprise explicit dependencies specified by the user.

11. One or more non-transitory computer-readable media
as recited in claim 1, further storing computer-executable
instructions, when executed, cause the one or more proces-
sors to perform an act comprising notifying the user the stack
has been provisioned at least partly in response to success-
fully provisioning each of the multiple, different network
resources.

12. One or more non-transitory computer-readable media
as recited in claim 1, further storing computer-executable
instructions, when executed, cause the one or more proces-
sors to perform acts comprising:

receiving an indication provisioning of one of the multiple,

different network resources has failed; and

rolling back each successfully provisioned one of the mul-

tiple, different network resources at least partly in
response to the receiving of the indication.

13. One or more non-transitory computer-readable media
as recited in claim 12, further storing computer-executable
instructions, when executed, cause the one or more proces-
sors to perform an act comprising notifying the user provi-
sioning of the stack has failed at least at least partly in
response to the receiving of the indication.

14. A method, comprising:

under control of one or more computer systems configured

with executable instructions,

receiving over a network, from a computing device of an
external user of a resource provisioning service com-
prising multiple, different network resources, a tem-
plate, wherein the template includes pre-populated
instructions for requesting to provision a stack of at
least two different types of the multiple, different
network resources according to one or more param-
eters associated with each of the at least two different

US 9,178,766 B2

17

types of the multiple, different network resources,
wherein the one or more parameters are specified in
the template received from the computing device of
the external user;

parsing the template to identify each of the multiple,
different network resources requested for provision-
ing;

attempting to provision each of the at least two different
types of the multiple, different network resources at
least partly in response to the parsing, wherein said
attempting is based at least in part on the template
received from the computing device of the external
user;

in response to a case in which each of the at least two
different types of the multiple, different network
resources were successfully provisioned for the exter-
nal user in accordance with the template, notifying the
external user the stack has been successfully provi-
sioned; and

in response to a case in which one or more of the at least
two different types of the multiple, different network
resources were not successfully provisioned, notify-
ing the external user the stack has not been success-
fully provisioned.

15. A method as recited in claim 14, wherein each of the
multiple, different network resources reside on a cloud-com-
puting platform.

16. A method as recited in claim 14, further comprising
maintaining a user account associated with the user, and
wherein the attempting to provision the multiple, different
network resources comprises attempting to provision the
multiple, different network resources on behalf of the user,
wherein a cost associated with a successful provisioning of a
network resource is charged to the user account associated
with the user.

17. A method as recited in claim 14, wherein the template
comprises a text file comprising text-based instructions
including calls to each of the multiple, different network
resources.

18. A method as recited in claim 14, wherein the template
specifies a particular version of multiple different versions for
at least one of the multiple, different network resources.

19. A method as recited in claim 14, wherein the template
specifies a logical name selected by the user for a component
of one of the multiple, different network resources.

20. A method as recited in claim 14, wherein the parsing of
the template comprises parsing the template to identify
implicit dependencies amongst the multiple, different net-
work resources, and wherein the attempting to provision the
multiple, different network resources comprises attempting
to provision the multiple, different network resources in an
order based at least in part on the implicit dependencies.

21. A method as recited in claim 14, wherein the request
explicitly specifies a dependency between at least two of the
multiple, different network resources, and wherein the
attempting to provision the multiple, different network
resources comprises attempting to provision the multiple,
different network resources in an order based at least in part
on the dependency.

22. A method as recited in claim 14, wherein the attempting
to provision the multiple, different network resources com-
prises attempting to provision at least some of the multiple,
different network resources in parallel.

23. A method as recited in claim 14, further comprising
tearing down those ones of the multiple, different network

20

25

35

40

45

65

18

resources successtully provisioned when one or more of the
multiple, different network resources is not successfully pro-
visioned.

24. A method as recited in claim 14, wherein each of the
one or more parameters associated with a respective one the at
least two of the multiple, different network resources speci-
fies one of a requested size, a capability, or a characteristic of
the respective network resource.

25. The method as recited in claim 14, wherein the different
types of network resources comprise a storage service, a load
balancing service, a compute service, or a security service.

26. An apparatus, comprising:

one or more processors;

memory, accessible by the one or more processors; and

a template-based stack builder stored in the memory and

executable on the one or more processors to:

receive over a network, from an external user of a
resource provisioning service comprising distinct
network resources, a template comprising prepopu-
lated instructions effective at least in part to provision
a stack of different types of the distinct network
resources based at least in part on a template, the
template comprising pre-populated instructions for
creating the stack including the distinct network
resources according to one or more parameters speci-
fied in the template received from a computing device
of the external user;

parse the template to identify each of the distinct net-
work resources; and

attempt to provision each of the distinct network
resources on behalf of the external user, wherein the
attempt to provision each of the distinct network
resource is based at least in part on the template
received from the computing device of the external
user.

27. An apparatus as recited in claim 26, wherein the tem-
plate-based stack builder is further executable on the one or
more processors to:

notify the user the stack has been successfully provisioned

when the template-based stack builder has successfully
provisioned each of the distinct network resources on
behalf of the user; and

notify the user the stack has not been successfully provi-

sioned when the template-based stack builder fails to
successfully provision at least one of the distinct net-
work resources on behalf of the user.

28. An apparatus as recited in claim 27, wherein the tem-
plate-based stack builder is further executable on the one or
more processors to:

roll back each of the distinct network resources the tem-

plate-based stack builder has successfully provisioned
when the template-based stack builder fails to success-
fully provision the at least one of the distinct network
resources on behalf of the user.

29. An apparatus as recited in claim 26, wherein the tem-
plate-based stack builder is further executable on the one or
more processors to receive a request to create the stack for a
web application, and wherein the distinct network resources
comprise a cloud-based load balancing service, a cloud-based
compute service, and a cloud-based storage service.

30. An apparatus as recited in claim 26, wherein the distinct
network resources form at least a portion of a cloud-comput-
ing platform managed by a single entity.

31. An apparatus as recited in claim 26, wherein one of the
distinct network resources forms at least a portion of a cloud-
computing platform managed by a first entity and another of

US 9,178,766 B2

19

the distinct network resources forms at least a portion of a
cloud-computing platform managed by a second entity inde-
pendent of the first entity.

32. An apparatus as recited in claim 26, further comprising
a database storing or having access to multiple different tem-
plates, each of the multiple different templates comprising
pre-populated instructions for creating a stack including dis-
tinct network resources.

33. An apparatus as recited in claim 32, wherein at least a
portion of the multiple different templates have been pro-
vided by a community of independent users.

34. An apparatus as recited in claim 26, wherein each of the
one or more parameters associated with a respective one the
distinct network resources specifies one of a requested size, a
capability, or a characteristic of the respective network
resource.

35. The apparatus as recited in claim 26, wherein the dis-
tinct types of network resources comprise a storage service, a
load balancing service, a compute service, or a security ser-
vice.

10

15

20

20

